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This article examines the qualitative pattern of flow in the interaction of an 
off-design jet with a barrier. A criterion for unstable flow about the barrier 
is presumed to exist. 

The interaction of an off-design jet with a barrier is a complex gasdynamic phenomenon. 
This complexity is due to the distribution of the parameters in the jet and the generation 
of shock waves and regions of intensive rarefaction. Also, a slightly off-design jet typi- 
cally has a periodic structure in its initial section, this section gradually degenerating 
due to the effect of viscosity [I, 2]. 

In flow against a barrier, a significant role in forming the flow is played by the shape 
of the barrier and its transverse dimensions. To date, most studies have focused on the in- 
teraction of underexpanded jets with an infinite flat barrier [3-6]. More recently, atten- 
tion has been increasingly given tO the interaction of supersonic jets with a low degree of 
underexpansion and blunt barriers with transverse dimensions which are comparable to the 
diameter of the jet. 

The IAB-451 unit was used to photograph jets in different flow regimes and with differ- 
ent barrier shapes. A typical case is shown in Fig. I, where the air jet had the parameters 
M a = 2, n = 4, | = 5~ sphere radius R = 2.4r a. Analysis of the change in the configuration 
of the shock waves with increasing distance between the barrier and nozzle revealed several 
characteristic zones. 

Zone ]. The intensity of the "hanging" shock wave is low at the beginning of this zone. 
Thus, the central shock which appears before the barrier interacts directly with the boundary 
of the jet. The shock is nearly spherical in form (Fig. la), regardless of the form of the 
barrier (plane, cone with a high angle at its apex, a sphere of large radius, etc.). The 
deformation of the central shock seen as the barrier moves away from the nozzle is caused by 
nonuniformity of the flow in the region of the rarefaction wave on the one hand and, on the 
other hand, by the interaction of the central shock with the "hanging" shock of the free jet. 
This interaction leads for blunt barriers to the formation of shock waves with a triple con- 
figuration. Here, the curvature of the central shock in a certain neighborhood of the triple 
point may be opposite its curvature in the vicinity of the jet axis (Fig, Ib). It should be 
noted that the direction of the initial element of the central shock at the triple point is 
unambiguously determined by the angle of inclination of the "hanging" (incident) shock and 
the Mach number ahead of this point. The subsequent deformation -- the development of a sec- 
tion of the opposite curvature -- occurs in such a way that at a certain station it has curva- 
ture of one sign, i.e. convex toward the barrier (Fig. Ic). This station corresponds ~o the 
end of the first zone and the beginning of the second zone. For blunt barriers character- 
ized by subsonic flow after the central shock, the position of the latter coincides with the 
station of the jet at which the first characteristic of the rarefaction wave, generated on 
the edge of the nozzle, reaches the axis of the jet. 

Zone 2. The form of the central shock changes little in this zone, but there is a sub- 
stantial increase in the distance between the shock and the barrier (Fig. Id and e). This 
is because the rate of flow of the gas through the central shock wave decreases with increas- 
ing distance to the barrier, and there is accordingly an increase in the gas flow rate 
through the "hanging" and reflected shock waves. Also, the annular flow has a higher velo- 
city and higher stagnation pressure than the flow which has passed through the central shock. 
Thus, greater distances than exist with the barrier positioned near the nozzle are needed to 
turn the flow. On the whole, the shock waves ahead of the barrier approach the configuration 
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Fig. I. Photographs of flow of an air jet about a 
spherical barrier with a radius R = 2.4: a) x = 0.5; 
b) I; c) 2; d) 4; e) 6; f) 9; g) I0; h) II; i) 16. 

of the shock waves in the free jet. The end of zone 2 roughly corresponds to the station at 
which the "hanging" shock is reflected from the axis in the unperturbed jet. In the inter- 
action with a flat barrier, this station is located somewhat closer to the nozzle (see below). 

Zone 3. If the transverse dimensions of the barrier are greater than the Mach disk of 
the free jet, then the stable flow ahead of the barrier is disturbed, although its position 
and the parameters of the jet remain the same. It can be seen from Fig. If and g that the 
zone of instability is a certain region in front of the barrier. There are no clearly visible 
shocks. A high-speed camera was used to observe oscillations of shock waves ahead of the 
barrier, which periodically approached the barrier and moved away from it a certain limiting 
distance. The frequency of the oscillations was roughly 2000 Hz. This means that a certain 
volume of the gas ahead of the barrier also experiences oscillations, resulting in a loud 
noise and intensive vibration of theunit. It was established that the instability zone 
roughly corresponds to the zone of subsonic flow in the free jet (the features of this 
unstable flow are described below). The end of zone 3 is the position of the barrier at 
which a continuous shock wave appears ahead of the barrier (Fig. li). This is seen when the 
barrier is moved beyond the sonic section of the free jet. 

With a further increase in the distance to the barrier, the character of the flow depends 
on the degree of underexpansion of the jet n. When n is small and the jet has a periodic 
structure, the above zones are repeated. In particular, the unstable flow regime may occur 
again. 

A conclusion of practical importance which follows from analysis of the qualitative flow 
pattern for different types of barriers is that the form of the central and reflected shocks 
within zone 2 is nearly independent of the form of the barrier. In other words, the same 
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F ig .  2. Diagram o f  i n t e r a c t i o n  o f  an o f f - d e s i g n  
jet with a blunt barrier in zone 2: AF) boun- 
dary; AxT, TN, TF) "hanging," cefitral, and re- 
flected shock waves; TH) contact surface; AB, BL) 
boundary characteristics; OE) barrier; I, 2, 3, 
4, 5, 6) characteristic regions of the jet. 

given wave structure corresponds to different forms offairly blunt barriers. In this case, 
shocks waves withatriple configuration are always generated , this configuration on the 
whole determining the form of the central and reflected shock waves (Fig. 2). This allows 
us to determine the mutualposition of the shocks and the barrier by assigning the position 
of the point T and approximating the form of the generatrices of the shocks TN and TF with a 
parabola and a Straight line, respectively. We canthen approximately determine the pressure 
on the barrier and the total force exerted on it by the jet [7]. It should be noted that a 
similar conclusion on the stability of the shape of the shock waves was made inan analysis 
of photographs of counterflowing jets [8]. 

Instability of the Flow Regime. Study of the interaction of anunderexpanded jet with 
a flat barrier [9] showed that unstable flow about the barrier is seen from the distance 

h = xc (1.26-- % 17Me), .(~ ) 

which is somewhat closer to the nozzle than the position of the Mach disk of the free jet. 
It was also established that the zone of" instability does not embrace the entire zone of 
subsonic flow of the free jet. When the subsonic zone is sufficiently extensive, stable 
flow about the barrier is disturbed only at the beginning ("strong instability") and end 
("secondary instability") of the subsonic zone. A region of circular flow arises at the �9 
intermediate stations aheadof the barrier. The pressure diagram at these stations is char- 
acterized by a distinct peripheral maximum. This circumstance, seen in the present case, was 
noted in [4, 10., 11].  

The reason for the first (strong) instability can be explained as follows (also see 
[i0]). When the barrier is located a distance h from the nozzle edge, the contact surface 
(see Fig. 2) closes on the barrier. The posSibility of such closure stems from the following 
factors. With increasing distance to the barrier, the distance from the nozzle to the 
shocks TN and TF also increases (the point T slides along the "hanging" shock, as it were). 
Here, the mass of the gas passing through the central shock TN decreases, and its stagnation 
pressure (Po)TN, characterizing the reserve of mechanical energy of the gas, becomes less 
than (Po)TF in the annular flow passing through the shocks AT and TF. Also, the angle of 
inclination of the velocity vector at point T (after the central shock) also decreases with 
increasing distance to the barrier andthe system of shock waves,'approaching the angle of 
inclination in the free jet, i.e. the flow should turn through a greater angle A| in the 
shock layer than at the barrier positions near the nozzle. Thus, the annular flow, having 
considerable mass and a greater pressure compared to the central flow, Overlaps the central 
flow at a certain position, i.e. the contact surface closes on the'barrier. These considera- 
tions allow us to suggest that there exists a criterion which takes these factors into 
account, i.e. the following functlonal relationship exists: 

Ne = [ (~r, (Po)rfl(Po)r~, AO), (2) 

where ~T is the relative gas flow rate through the central shock wave. 

When the value of Ne corresponds to its critical value, the flow becomes unstable. It 
should be noted that the quantities in the right side of Eq. (2) can be calculated if the 
structure of the shocks is known. 
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Another possible form of the criterion Ne is a function of the ratio of the projections 
of the impulses of the annular and central flows: 

Ne = ~ ([rr/IrN). (3) 

In particular, the quantity Ne can be written directly in the form of the ratio of the projec- 
tion of the impulse of the annular flow after the reflected shock TF in the direction normal 
to the barrier at the point E to the projection of the impulse of the central flow in the 
same direction: 

Ne = Qrr(V cos (v, ~e~)r~+Tpr~Cos (n-rF, ~z)FrF 

Qr# (v cos (v~ ne))r# "{" PrN cos (~rz, no)FrN" (4) 

We will reduce Eq. (4) to dimensionless form. For this, we introduce mean values of the 
parameters and refer the quantities to O~zv a. Then 

Ne = {~M~n= (1 - -  mr) [ITs cos ~r5, no) q- [Fs cos (ors, ne)] + [Xrs %s+ fir43 ~- ~F ffF] COS (nrF' ~E) Fr~}  • 

x + ( s )  

I t  should be emphasized t h a t  a necessary c o n d i t i o n  f o r  the appearance o f  i n s t a b i l i t y  i s  
s u f f i c i e n t  b lun tness  o f  the b a r r i e r ,  the t ransve rse  dimensions o f  which should be g r e a t e r  
than the d iameter  o f  the Mach d i sk  o f  the f r e e  j e t  [ 1 2 ] .  

To eva lua te  the expanse o f  the zones o f  the j e t ,  we can use the f o l l o w i n g  r e l a t i o n s .  
The boundary of zone 1 

xB=co t (a=- -e=) ,  (6) 

where o~z i s  the Mach angle on the nozz le  edge. The boundary o f  zone 2 i s  determined from 
Eq. (1) for a flat barrier and from the following empirical relation for other cases 

x c = 1.4M= ( 7 )  

The boundary o f  zone 3 

x D -  1.25x c . (8) 

For example, f o r  a j e t  w i t h  the parameters F~z = 2, @a = 5 ~ , k = i . 4 ,  n = 4, we ob ta i n  
the va lues  x B = 2 .1 ,  x C = 6 .7 ,  x D = 8 .4 .  

In  conc lus ion ,  l e t  us p resent  the c r i t i c a l  va lues o f  Ne ob ta ined  f o r  a f l a t  b a r r i e r  
placed in an a i r  j e t  wi th  k = 1.4, Ha = 2, | = 5~ a) n = 8 Ne = 35, b) n = 20 Ne ffi 75, 
c) n = 50 Ne = 90. 

NOTATION 

r, radial coordinate; x, axial coordinate; R, radius of sphere; ~, angle at apex of 
cone; Q, mass rate; v, velocity; n = Pa/Pb, degree of off-design of discharge; n, vector of 
the unit normal; p, pressure; F, area; y, ratio of specific heats; M, Mach number; n, rela- 
tive flow rate of gas; @, angle of inclination of velocity vector to jet axis; I, projection 
of impulse of the flow; Ne, criterion of beginning of unstable flow; o, ratio of stagnation 
pressures on the shock wave; h, position of barrier at the beginning of strong instability; 

ffi p/po, ~ ffi V/Vmax, gasdynamlc functions. Indices: 0, stagnation parameters; a, nozzle 
edge; b, jet boundary; C, Mach disk. The linear dimensions are referred to the nozzle 
radius. The other letter and n,~her indices denote characteristic points and jet regions. 
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THEORY OF TRANSPORT OF ROCK PARTICLES DURING DRILLING 

WITH CONSIDERATION OF WATER ABSORPTION AND INFLOW 

I. A, Amiraslanov UDC 532.584 

An approximate one-dimensional theory of the process of transport of heavy solid 
rock particles by the flow of dril~ing mud in a vertical well is proposed. 

The process of transport of solid rock particles by drilling mud plays an important role 
in the technological cycle of drilling. Imperfect bottom-hole flushing leads to collapse and 
shutdown of drilling. It is necessary to know the distribution of the concentration of solid 
particles in the annular space of the well to select the most efficient trouble-free drilling 
practices. The solid particles of fractured rock carried to the surface by the drilling mud 
have an order of I0-3-I0 -7 m. Drilling mud is an aqueous suspension of clay with various 
additives; its viscosity is of the order of 20-200 cP. The free-fall velocity of the heavy 
rock particles in the mud does not exceed | m/sec in order of magnitude, and the characteris ~ 
tic drilling-mud velocity has an order of I0 m/sec. Therefore we will consider that the 
velocity of the solid particles is equal to the mud velocity. In addition, we will assume 
the well is vertical and the process is one-dimensionaL 

On the basis of the adopted assumptions we obtain the following equations of mass trans- 
port: 

(0c + v = _ cQ- (x, t) +g(x, t), (i) 
s T [  ax ! 

vs = Qo (t) + Q+ (x, t) Q- (x. r dx. (2) 
o o 

Usually Q+ and Q- are observed on the exposed, uncased section of the well and are asso- 
ciated with various complications occurring during drilling (for example, as a consequence of 
fractures, creep, or low strength of the rocks and lost circulation, water inflow, cave-in, 
etc., caused by these factors). Henceforth Q-, Q+, Qo, and g are considered known. 

Let us examine some solutions of Eq. (I). 
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